

Architecture and Integration

Determining Architecture Quality

Fachbereich 2 Informatik und Ingenieurwissenschaften

Learning Objectives: Determining Architecture Quality

Particify

How would you rate this architecture? Likert, 5 examples

Quality Aspects of an Architecture

Concise: Contains all relevant facts and not more **Architecture Quality** Clear: can be easily understood by all stakeholders **Conform:** architecture models follow agreed principles Coupling: modules or elements should be loosely coupled Cohesion: elements within modules are strongly connected **Correct:** Depicts the corresponding system correctly

Benefits of Concise Architecture

Issues from exhaustive architectures

Architecture

- Contains unnecessary elements
- Explosion of relationships
- Architecture hard to change

Architecture model

- Contains irrelevant information
- Effort for modelling complete information
- Effort for keeping information up-to-date
- Hard to find relevant information

Benefits of concise architectures

Architecture

- · Focuses on required elements
- Only required relationships
- Architecture easier to maintain

Architecture model

- Focuses on relevant information only
- Reasonable effort for modelling
- Easy to keep models up-to-date
- Model shows basic information

Benefits of Clear Architecture

Issues from chaotic architectures

Architecture

- Missing structure
- No common patterns
- Plethora of relationships
- Architecture hard to change

Architecture model

- · Model hard to read
- Model is hard to maintain
- · Relevant information hard to find

Benefits of <u>clear</u> architectures

Architecture

- Clear structure
- Follows common principles
- Contains relevant relationships only
- Architecture easier to change

Architecture model

- · Models tend to be easy to understand
- Models can be changed easier
- Common structure helps finding information

Conformance: Example Principles

Principle

IT systems adhere to open standards

Software applications are preferably open source

Data is provided by the source

Each kind of data is stored in single dedicated IT system

Descriptions

- No individual or proprietary solutions
- Open to communicate with partners and systems
- Reuse of common knowledge
- No vendor lock-in
- Software can be customized to individual needs
- Maintenance together with community
- Enter data where it gets available first
- Those who generate data, enter the data
- Avoid data redundancies
- Reduce data quality issues
- Provide single source of truth

Particify

Which kind of principles could you imagine for an architecture?

Coupling: Overview

- Coupling refers to the number of dependencies between two or more systems.
- Low coupling is usually recommended as it fosters modularisation

High Coupling: Example

Low Coupling: Example

- > Single dependency between IT systems of the two departments
- > High cohesion

Cohesion: Overview

- Cohesion refers to the number of dependencies between element s within one system.
- High cohesion is usually recommended as internal elements are strongly related
- Low coupling usually determines high cohesion (and vice versa)

Low cohesion

High cohesion

Correctness of an Architecture Model

- An architecture model has to depict the corresponding architecture as it is
- A wrong picture will not help with fixing issues but just hides them

Correctness of an Architecture Model

A correct architecture model needs to represent

- Elements as they exist in reality (as-is) or planned (to-be)
- Complete set of relationships
- Correct information concerning elements and relationships
- Underlying principles and assumptions
- Any weakness (for as-is models)
- Improvements (for to-be models)
- ➤ Otherwise, it cannot be used for managing architecture!

What is this Architecture About?

Complete Picture: Architecture of a Pirate Ship

Purpose Matters: Architecture of a Pirate Ship

Architecture Follows a Purpose

Elements of an architecture

Elements and their relationships

Purpose of an architecture

Show the Pirate Ship

Source: Hohpe: The Software Architect Elevator, 2020, pp.154

Quality Aspects with respect to Purpose

Concise: Contains relevant facts for its purpose

Clear: easily understood by affected stakeholders

Conform: follows agreed principles for its purpose

Coupling: purpose influences the modules of an architecture

Cohesion: each module follows a purpose

Correct: correctness determined by its purpose

Exercise 6.1:

- Read the article provided in CampUAS: "Chris: Architecture is ..:"
- Prepare a presentation concerning the following questions:
 - What is shown in the architecture?
 - What is the key message of the text?
 - How does Chris justify his statements?
- Time: 25 minutes

